Linux 文件系统概述

作者:北南南北
来自:LinuxSir.Org
摘要: 本文通过文件系统的定义说起,然后通过引文简单的介绍了一下文件系统类型;对Linux常用的ext2、ext3及reiserfs 根据本人使用经验也泛泛的谈了谈,但并不是专业的。如何阅读本文,还是用马克思理论告诉我们的方法:一分为二,边看边批吧; 目录索引 一、什么是文件系统 (Filesystem) 二、文件系统的类型;
三、Linux 文件系统的选择和安全性; 四、Linux 支持的文件系统;
五、文件系统的特性;
六、在Linux中,文件系统的创建和挂载; 七、关于本文;
八、参考文档;
九、相关文档;
++++++++++++++++++++++++++++++++++++++++++++++++++++++++
正文
++++++++++++++++++++++++++++++++++++++++++++++++++++++++

一、什么是文件系统 (Filesystem);

1、常见定义方法;

什么是文件系统(filesystem),用一两句话解答出来,实在有点困难,这个问题只能留给文件系统的设计者或对文件系统精通的专业人士来答复;下面 是关于filesystem的定义是我从 Google.com 上搜索到的;下面我们分析一下,对我们来说,了解一下也有好处。如果您是专业人士,如果您有自己的定义方法,请在本文后面留言;谢谢; 定义一;
A directory structure contained within a disk drive or disk area. The total available disk space can be composed of one or more filesystems. A filesystem must be mounted before it can be accessed. To mount a filesystem, you must specify a directory to act as the mount point. Once mounted, any access to the mount point directory or its subdirectories will access the separate filesystem. 文件系统是包括在一个磁盘(包括光盘、软盘、闪盘及其它存储设备)或分区的目录结构;一个可应用的磁盘设备可以包含一个或多个文件系统;如果您想进入一个 文件系统,首先您要做的是挂载(mount)文件系统;为了挂载(mount)文件系统,您必须指定一个挂载点;一旦文件系统被挂载, freebooks.by.ru/view/ShellProgIn24h/31480175.htm

定义二;

A method of organising files on a disk, eg NTFS, FAT.
linux-ntfs.sourceforge.net/ldm/home/terms.html 文件系统是在一个磁盘(包括光盘、软盘、闪盘及其它存储设备)或分区组织文件的方法,如NTFS或FAT;
定义三;

A data structure or a collection of files. In Unix, filesystem can refer to two very distinct things, the directory tree or the arrangement of files on disk partitions. 文件系统是文件的数据结构或组织方法。在Unix中,文件系统涉及两个非常独特的事情,目录树或在磁盘或分区上文件的排列; www.emulex.com/ts/docfc/glossary.htm
定义四;

the structure of files on a disk medium which is visible via the operating system, ie the structure of files which a Unix user can see using "ls" and other tools 文件系统是基于操作系统的,建立在磁盘媒质上的可见体系结构,例如这种结构对于一个Unix用户来说可以用ls 或其它工具可以看到; www.ucolick.org/~de/deimos/glossary.html

定义五;

A software mechanism that defines the way that files are named, stored, organized, and accessed on logical volumes of partitioned memory. 文件系统是基于被划分的存储设备上的逻辑上单位上的一种定义文件的命名、存储、组织及取出的方法; www.evestigations.com/html/glossary.html

定义六;

In computing, a file system is a method for storing and organizing computer files and the data they contain to make it easy to find and access them. File systems may use a storage device such as a hard disk or CD-ROM and involve maintaining the physical location of the files, or they may be virtual and exist only as an access method for virtual data or for data over a network (e.g. NFS). 在计算机业,一个文件系统是有组织存储文件或数据的方法,目的是易于查询和存取。文件系统是基于一个存储设备,比如硬盘或光盘,并且包含文件文件物理位置 的维护;也可以说文件系统也是虚拟数据或网络数据存储的方法,比如NFS; en.wikipedia.org/wiki/Filesystem
2、理解文件系统的关健词;

0)存储介质:
硬盘、光盘、软盘、Flash盘、磁带、网络存储设备等;
1)磁盘的分割:

这是针对大容量的存储设备来说的,主要是指硬盘;对于大硬盘,我们要合理规划分区,所以要谈到硬盘的分割。硬盘的分割,Linux有fdisk、 cfdisk和parted等,常用的还是fdisk 工具,Windows和dos常用的也有fdisk ,但和Linux中的使用方法不一样。硬盘的分割工具还有第三方程序,比如PQ; 至于对分区的理解和操作请参考: 《实例解说 fdisk 使用方法》
《合理规划您的硬盘分区》
2)文件系统的创建:

这个过程是存储设备建立文件系统的过程,一般也被称为格式化或初始化,通过一些初始化工具来进行。一般的情况下每个类型的操作系统都有这方面的工具,也有 多功能的第三方工具,比如PQ。我的建议是如果您不太懂操作系统自带的工具,可以用第三方工具来切割硬盘,把硬盘分割成若干分区,然后再用操作系统自带的 工作来初始化分区,也就是格式化分区。在Linux中有 mkfs系列工具;

3)挂载(mount):

文件系统只有挂载才能使用,Unix类的操作系统如此,Windows也是一样;在Windows更直观一些,具体内部机制我们不太了解。但Unix类的 操作系统是通过mount进行的,挂载文件系统时要有挂载点,比如我们在安装Linux的过程中,有时会提示我们分区,然后建立文件系统,接着是问你的挂 载点是什么 ,我们大多选择的是/ 。我们在Linux系统的使用过程中,也会挂载其它的硬盘分区,也要选中挂载点,挂载点通常是一个空置的目录,最好是我们自建的空置目录;

4)文件系统可视的几何结构:

文件系统的是用来组织和排列文件存取的,所以她是可见的,在Linux中,我们可以通过ls等工具来查看其结构,在Linux系统中,我们见到的都是树形结构;比如操作系统安装在一个文件系统中,他表现为由/ 起始的树形结构;
[root@localhost ~]# cd /
[root@localhost /]# tree

二、文件系统的类型;
文件系统类型有很多,您可以在 《Linux 文件系统(filesystem)资源索引》 中查看;但我们在Linux中常用的文件系统主要有ext3、ext2及reiserfs ; Windows和Dos常用的文件系统是fat系列(包括fat16及fat32等)和ntfs 文件系统; 光盘文件系统是ISO-9660文件系统; 网络存储NFS服务器在客户端访问时,文件系统是nfs,这个比较特殊一点; 至于您想了解的更多,请访问您所用的文件系统的官方网站,请在《Linux 文件系统(filesystem)资源索引》 查找相应的资源,谢谢;
三、Linux 文件系统的选择和安全性;
如果做为专业人士来说,应该说哪个文件系统都是安全的;用Linuxfish的话来说“哪个文件系统的设计者都不是傻子,他们应该明白自己的作品是怎么回 事。”。做为文件系统的设计者来说,我们一般在使用的过程中所遇到的问题,他们都应该有解决办法。但我们毕竟不是专业从事文件系统研究的,所以我们有必要 从使用角度来说明文件系统的安全性; 对于初学Linux的弟兄,一定会遇到文件系统的选择左右为难的情况,因为大多新手并不知道哪个文件系统更好;现在我们来谈谈文件系统的选择;
1、Linux操作系统安装过程中的文件系统的选择;

1)ext2 文件系统;

ext2文件系统应该说是Linux正宗的文件系统,早期的Linux都是用ext2,但随着技术的发展,大多Linux的发行版本目前并不用这个文件系 统了;比如Redhat和Fedora 大多都建议用ext3 ,ext3文件系统是由ext2发展而来的。对于Linux新手,我们还是建议您不要用ext2文件系统;ext2支持undelete(反删除),如果 您误删除文件,有时是可以恢复的,但操作上比较麻烦; ext2支持大文件; ext2文件系统的官方主页是: http://e2fsprogs.sourceforge.net/ext2.html
2)ext3 文件系统:是由ext2文件系统发展而来;

ext3 is a Journalizing file system for Linux(ext3是一个用于Linux的日志文件系统),ext3支持大文件;但不支持反删除(undelete)操作; Redhat和Fedora都力挺ext3;至于ext3文件系统的更多特性,请访问 《Linux 文件系统(filesystem)资源索引》
3)reiserfs 文件系统;

reiserfs 文件系统是一款优秀的文件系统,支持大文件,支持反删除(undelete);在我的测试ext2、reiserfs 反删除文件功能的过程中,我发现reiserfs文件系统表现的最为优秀,几乎能恢复 90%以上的数据,有时能恢复到100%;操作反删除比较容易;reiserfs 支持大文件;
4)Linux文件系统对大文件支持的对比;
请参考http://www.suse.de/~aj/linux_lfs.html Filesystem File Size Limit Filesystem Size Limit
ext2/ext3 with 1 KiB blocksize 16448 MiB (~ 16 GiB) 2048 GiB (= 2 TiB)
ext2/3 with 2 KiB blocksize 256 GiB 8192 GiB (= 8 TiB)
ext2/3 with 4 KiB blocksize 2048 GiB (= 2 TiB) 8192 GiB (= 8 TiB)
ext2/3 with 8 KiB blocksize (Systems with 8 KiB pages like Alpha only) 65568 GiB (~ 64 TiB) 32768 GiB (= 32 TiB)
ReiserFS 3.5 2 GiB 16384 GiB (= 16 TiB)
ReiserFS 3.6 (as in Linux 2.4) 1 EiB 16384 GiB (= 16 TiB)
XFS 8 EiB 8 EiB
JFS with 512 Bytes blocksize 8 EiB 512 TiB
JFS with 4KiB blocksize 8 EiB 4 PiB
NFSv2 (client side) 2 GiB 8 EiB
NFSv3 (client side) 8 EiB 8 EiB
Note Kernel Limitations: The table above describes
limitations of the on-disk format. The following kernel limits
exist:
  • On 32-bit systems with Kernel 2.4.x: The size of a file and a
    block device is limited to 2 TiB. By using LVM several block
    devices can be combined enabling the handling of larger file
    systems.
  • 64-bit systems: The sizes of a filesytem and of a file are
    limited by 263 (8 EiB). But there might be hardware
    driver limits that do not allow to access such large devices.
  • Kernel 2.6: For both 32-bit systems with option CONFIG_LBD set
    and for 64-bit systems: The size of a file system is limited to
    273 (far too much for today). On 32-bit systems
    (without CONFIG_LBD set) the size of a file is limited to 2 TiB.
    Note that not all filesystems and hardware drivers might handle
    such large filesystems.

Note in the above:
1024 Bytes = 1 KiB;
1024 KiB = 1 MiB;
1024 MiB = 1 GiB; 1024 GiB = 1 TiB; 1024 TiB = 1 PiB; 1024 PiB = 1
EiB (check http://physics.nist.gov/cuu/Units/binary.html)
Maximum Number of Partitions An IDE disk has 64 minors, one is used for the full disk and therefore 63 partitions are possible. A SCSI disk has 16 minors and therefore only 15 partitions maximal.
2、文件系统的安全性;
任何一个文件系统在专家眼中都是安全的,就象MS说Windows是安全性是可靠的类似,如果MS专家来用Windows绝对没有任何问题,毕竟人家是专家,我们是使用者;专家和使用者还是有很大区别的; 因为我们不是专家,所以我们才要选择更为安全易用的文件系统,下面我们对比一下ext2、ext3和reiserfs;
1)ext2、ext3和reiserfs 文件系统自动修复能力对比;

ext2、ext3及reiserfs 都能自动修复损坏的文件系统,也都是在开机时进行。从表现来看reiserfs更胜一筹;ext2和ext3文件系统在默认的情况下是“This filesystem will be automatically checked every 21 mounts or 180 days, whichever comes first”,也就是每间隔21次挂载文件系统或每180天,就要自动检测一次。 通过实践来看ext2和ext3在auto check上是存在风险,有时文件系统开机后就进入单用户模式,并且把整个系统 “扔”进lost+found"目录,如果要恢复系统,就得用fsck 来进行修复;当然fsck 也同样存在风险;所以我们对ext2和ext3文件系统的使用,对新手来说的确需要心里准备;毕竟修复已经损坏的ext2和ext3文件系统是有困难的; 另外ext2和ext3文件系统对于意外关机和断电,也可能导致文件系统损坏,所以我们在使用过程中,必须是合法关机;比如执行poweroff指令来关 掉机器; reiserfs 文件系统也能自动修复,他在自动检测和修复上具有很强的功能,几乎很少出现ext2和ext3的情况,另外从速度来说他也比ext2、ext3文件系统的 速度要快; 通过我两个月的测试来看,reiserfs 对于意外断电表现最佳。为了验证reiserfs 文件系统的在意外断电的安全性上,我每天都直接断掉电源关机,但我们不应该说reiserfs 是安全的直接断电了事,直接断电有时也会造成硬盘物理损伤;reiserfs文件系统从未出现象ext2和ext3那样用手动方式来进行修复的情况。从这 方面来说reiserfs 还是极为安全的;
2)ext2、ext3和reiserfs 反删除功能对比;
从文件系统的反删除来看,ext2和reiserfs 都支持反删除,对于一般使用者来说应该是安全的,但对于保密单位来说可能意味着不安全。从反删除角度来说明文件系统的安全性,也是有两方面;昨天和 Linuxfish 讨论了这个问题,他说在Windows中引入了文件粉碎机这个可笑的工具,目的就是不让恢复已删除的文件。 如果您的工作是从事比较机密的,用ext3比较好,因为ext3一旦删除文件,是不可恢复的,虽然网上也有几个关于反删除恢复操作在ext3中,但实践来 看,并不是那么容易;因为反删除能恢复相应的绝秘资料的泄秘,所以ext3可能更适合您; 如果您是一般使用者,我还是建议用reiserfs文件系统,他支持反删除功能,反删除操作也比较容易;但也会存在一点问题。比如在Fedora或 Redhat中,有一个关于系统安全的selinux,在默认情况下,可能在reiserfs 中不支持selinux ;不过值得一说的是selinux是一个绝对庞大、功能丰富、涉及面极广的安全工具,selinux并不是一般使用者就能驾驭的了的;所以我们建议初学者 在使用Linux系统时先关掉selinux 功能;但您可以慢慢尝试熟悉使用它;在Fedora和Redhat最新的版本中,reiserfs文件系统的确是不支持selinux,所以您在 Fedora或Redhat中采用了reiserfs ,并且还想用selinux ,还是自己找解决办法,可能要打内核补丁才行;至于其它Linux发行版本是否存在这个问题,还得需要您来尝试;
四、Linux 支持的文件系统;
Linux目前几乎支持所有的Unix类的文件系统,除了我们在安装Linux操作系统时所要选择的ext3、reiserfs和ext2外,还支持苹果 MACOS的HFS,也支持其它Unix操作系统的文件系统,比如XFS、JFS、Minix fs 及UFS等,您可以在kernel的源码中查看;如果您想要让系统支持哪些的文件系统得需要把该文件系统编译成模块或置入内核; 关于如何编译内核,请参考《内核管理概述》; 当然Linux也支持Windows文件系统NTFS和fat,但不支持NTFS文件系统的写入;支持fat文件系统的读写;请参考《在Fedora core 4.0 加载NTFS和FAT32分区详述》 Linux也支持网络文件系统,比如NFS等; 挂载nfs文件系统的办法是: mount -t nfs 服务器地址:/目录 挂载点 下面是一个例子,比如我在192.168.1.4的机器做了一个NFS服务器,提供192.168.1.x网段上的所有机器都可以用NFS;具体做NFS服务器的过程省略,此处只讲怎么挂载;
[root@localhost ~]# showmount -e 192.168.1.4  首先查看NFS服务器共享的文件文件夹;
Export list for 192.168.1.4:
/opt/sirnfs *  注:位于 192.168.1.4机器上的 /opt/sirnfs 目录

[root@localhost ~]# mkdir /mnt/sirnfs  注:在本地机器建一个目录,做为NFS挂载点;

[root@localhost ~]# mount -t  nfs 192.168.1.4:/opt/sirnfs  /mnt/sirnfs   注:挂载NFS;

[root@localhost ~]# df -h   注:查看本地机挂载NFS是不是成功了;
Filesystem            容量  已用 可用 已用% 挂载点
/dev/hda7              11G  7.4G  2.9G  72% /
/dev/shm              236M     0  236M   0% /dev/shm
/dev/hda9              22G  837M   22G   4% /opt/data
192.168.1.4:/opt/sirnfs
                       63G   47G   17G  74% /mnt/sirnfs   注:这是挂载成功后的显示;

五、文件系统的特性;
Linux文件系统的特性决定文件的属性,比如我们通过chattr +i 来避免某个文件被改动,通过chattr+i 来改其为只读文件,在ext2和ext3下是可以的,但在reiserfs 这样做是不能起任何作用的; 不同的文件系统有不同的特性,这种特性往往决定着在文件系统文件和目录的属性,这也是我为何本文的主要原因;通过本文,我能引出在Linux中文件和目录属性的的操作; 每个文件系统都有一系列的工具,包括创建、修复、备份等,值得一说的是大多文件系统都有修复工具,在您的文件系统极为正常的情况下,最好不要用修复工具来检测和修复;比如最好不要用运行fsck工具,这个工具可能会使您的系统被破坏; 请参考:《Linux 创建文件系统及挂载文件系统流程详解》
六、在Linux中,文件系统的创建和挂载;
请参考《Linux 创建文件系统及挂载文件系统流程详解》 七、关于本文; 文件系统太广,此文档的确不太好写;但还是勉强写出来,虽然并不专业;或许对Linux新手还有点帮助; 八、参考文档; http://www.suse.de/~aj/linux_lfs.html
http://www.xenotime.net/linux/linux-fs.html
... ... 九、相关文档;

ref:www.linuxsir.org/main/

Linux 文件系统剖析

按照分层结构讨论 Linux 文件系统

developerWorks
 

级别: 初级

M. Tim Jones, 顾问工程师, Emulex Corp.

2007 年 12 月 03 日

在 文件系统方面,Linux® 可以算得上操作系统中的 “瑞士军刀”。Linux 支持许多种文件系统,从日志型文件系统到集群文件系统和加密文件系统。对于使用标准的和比较奇特的文件系统以及开发文件系统来说,Linux 是极好的平台。本文讨论 Linux 内核中的虚拟文件系统(VFS,有时候称为虚拟文件系统交换器),然后介绍将文件系统连接在一起的主要结构。

基本的文件系统体系结构

Linux 文件系统体系结构是一个对复杂系统进行抽象化的有趣例子。通过使用一组通用的 API 函数,Linux 可以在许多种存储设备上支持许多种文件系统。例如,read 函数调用可以从指定的文件描述符读取一定数量的字节。read 函数不了解文件系统的类型,比如 ext3 或 NFS。它也不了解文件系统所在的存储媒体,比如 AT Attachment Packet Interface(ATAPI)磁盘、Serial-Attached SCSI(SAS)磁盘或 Serial Advanced Technology Attachment(SATA)磁盘。但是,当通过调用 read 函数读取一个文件时,数据会正常返回。本文讲解这个机制的实现方法并介绍 Linux 文件系统层的主要结构。




   


什么是文件系统?

首先回答最常见的问题,“什么是文件系统”。文件系统是对一个存储设备上的数据和元数据进行组织的机制。由于定义如此宽 泛,支持它的代码会很有意思。正如前面提到的,有许多种文件系统和媒体。由于存在这么多类型,可以预料到 Linux 文件系统接口实现为分层的体系结构,从而将用户接口层、文件系统实现和操作存储设备的驱动程序分隔开。

文件系统作为协议
另一种看待文件系统的方式是把它看作一个协议。网络协议(比如 IP)规定了互联网上传输的数据流的意义,同样,文件系统会给出特定存储媒体上数据的意义。

挂装

在 Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂装(mount)。使用 mount 命令将一个文件系统附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。

为了说明 Linux 文件系统层的功能(以及挂装的方法),我们在当前文件系统的一个文件中创建一个文件系统。实现的方法是,首先用 dd 命令创建一个指定大小的文件(使用 /dev/zero 作为源进行文件复制)—— 换句话说,一个用零进行初始化的文件,见清单 1。


清单 1. 创建一个经过初始化的文件
                
$ dd if=/dev/zero of=file.img bs=1k count=10000
10000+0 records in
10000+0 records out
$

现在有了一个 10MB 的 file.img 文件。使用 losetup 命令将一个循环设备与这个文件关联起来,让它看起来像一个块设备,而不是文件系统中的常规文件:

$ losetup /dev/loop0 file.img
$

这个文件现在作为一个块设备出现(由 /dev/loop0 表示)。然后用 mke2fs 在这个设备上创建一个文件系统。这个命令创建一个指定大小的新的 ext2 文件系统,见清单 2。


清单 2. 用循环设备创建 ext2 文件系统
                
$ mke2fs -c /dev/loop0 10000
mke2fs 1.35 (28-Feb-2004)
max_blocks 1024000, rsv_groups = 1250, rsv_gdb = 39
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
2512 inodes, 10000 blocks
500 blocks (5.00%) reserved for the super user
...
$

使用 mount 命令将循环设备(/dev/loop0)所表示的 file.img 文件挂装到挂装点 /mnt/point1。注意,文件系统类型指定为 ext2。挂装之后,就可以将这个挂装点当作一个新的文件系统,比如使用 ls 命令,见清单 3。


清单 3. 创建挂装点并通过循环设备挂装文件系统
                
$ mkdir /mnt/point1
$ mount -t ext2 /dev/loop0 /mnt/point1
$ ls /mnt/point1
lost+found
$

如清单 4 所示,还可以继续这个过程:在刚才挂装的文件系统中创建一个新文件,将它与一个循环设备关联起来,再在上面创建另一个文件系统。


清单 4. 在循环文件系统中创建一个新的循环文件系统
                
$ dd if=/dev/zero of=/mnt/point1/file.img bs=1k count=1000
1000+0 records in
1000+0 records out
$ losetup /dev/loop1 /mnt/point1/file.img
$ mke2fs -c /dev/loop1 1000
mke2fs 1.35 (28-Feb-2004)
max_blocks 1024000, rsv_groups = 125, rsv_gdb = 3
Filesystem label=
...
$ mkdir /mnt/point2
$ mount -t ext2 /dev/loop1 /mnt/point2
$ ls /mnt/point2
lost+found
$ ls /mnt/point1
file.img lost+found
$

通过这个简单的演示很容易体会到 Linux 文件系统(和循环设备)是多么强大。可以按照相同的方法在文件上用循环设备创建加密的文件系统。可以在需要时使用循环设备临时挂装文件,这有助于保护数据。




回页首


文件系统体系结构

既然已经看到了文件系统的构造方法,现在就看看 Linux 文件系统层的体系结构。本文从两个角度考察 Linux 文件系统。首先采用高层体系结构的角度。然后进行深层次讨论,介绍实现文件系统层的主要结构。




回页首


高层体系结构

尽管大多数文件系统代码在内核中(后面讨论的用户空间文件系统除外),但是图 1 所示的体系结构显示了用户空间和内核中与文件系统相关的主要组件之间的关系。


图 1. Linux 文件系统组件的体系结构
图 1. Linux 文件系统组件的体系结构

用户空间包含一些应用程序(例如,文件系统的使用者)和 GNU C 库(glibc),它们为文件系统调用(打开、读取、写和关闭)提供用户接口。系统调用接口的作用就像是交换器,它将系统调用从用户空间发送到内核空间中的适当端点。

VFS 是底层文件系统的主要接口。这个组件导出一组接口,然后将它们抽象到各个文件系统,各个文件系统的行为可能差异很大。有两个针对文件系统对象的缓存(inode 和 dentry)。它们缓存最近使用过的文件系统对象。

每个文件系统实现(比如 ext2、JFS 等等)导出一组通用接口,供 VFS 使用。缓冲区缓存会缓存文件系统和相关块设备之间的请求。例如,对底层设备驱动程序的读写请求会通过缓冲区缓存来传递。这就允许在其中缓存请求,减少访问 物理设备的次数,加快访问速度。以最近使用(LRU)列表的形式管理缓冲区缓存。注意,可以使用 sync 命令将缓冲区缓存中的请求发送到存储媒体(迫使所有未写的数据发送到设备驱动程序,进而发送到存储设备)。

什么是块设备?
块设备就是以块(比如磁盘扇区)为单位收发数据的设备,它们支持缓冲和随机访问(不必顺序读取块,而是可以在任何时候访问任何块)等特性。块设备包括硬 盘、CD-ROM 和 RAM 盘。与块设备相对的是字符设备,字符设备没有可以进行物理寻址的媒体。字符设备包括串行端口和磁带设备,只能逐字符地读取这些设备中的数据。

这就是 VFS 和文件系统组件的高层情况。现在,讨论实现这个子系统的主要结构。

主要结构

Linux 以一组通用对象的角度看待所有文件系统。这些对象是超级块(superblock)、inode、dentry 和文件。超级块在每个文件系统的根上,超级块描述和维护文件系统的状态。文件系统中管理的每个对象(文件或目录)在 Linux 中表示为一个 inode。inode 包含管理文件系统中的对象所需的所有元数据(包括可以在对象上执行的操作)。另一组结构称为 dentry,它们用来实现名称和 inode 之间的映射,有一个目录缓存用来保存最近使用的 dentry。dentry 还维护目录和文件之间的关系,从而支持在文件系统中移动。最后,VFS 文件表示一个打开的文件(保存打开的文件的状态,比如写偏移量等等)。

虚拟文件系统层

VFS 作为文件系统接口的根层。VFS 记录当前支持的文件系统以及当前挂装的文件系统。

可以使用一组注册函数在 Linux 中动态地添加或删除文件系统。内核保存当前支持的文件系统的列表,可以通过 /proc 文件系统在用户空间中查看这个列表。这个虚拟文件还显示当前与这些文件系统相关联的设备。在 Linux 中添加新文件系统的方法是调用 register_filesystem。这个函数的参数定义一个文件系统结构(file_system_type)的引用,这个结构定义文件系统的名称、一组属性和两个超级块函数。也可以注销文件系统。

在注册新的文件系统时,会把这个文件系统和它的相关信息添加到 file_systems 列表中(见图 2 和 linux/include/linux/mount.h)。这个列表定义可以支持的文件系统。在命令行上输入 cat /proc/filesystems,就可以查看这个列表。


图 2. 向内核注册的文件系统
 图 2. 向内核注册的文件系统

VFS 中维护的另一个结构是挂装的文件系统(见图 3)。这个结构提供当前挂装的文件系统(见 linux/include/linux/fs.h)。它链接下面讨论的超级块结构。


图 3. 挂装的文件系统列表
 图 3. 挂装的文件系统列表

超级块

超级块结构表示一个文件系统。它包含管理文件系统所需的信息,包括文件系统名称(比如 ext2)、文件系统的大小和状态、块设备的引用和元数据信息(比如空闲列表等等)。超级块通常存储在存储媒体上,但是如果超级块不存在,也可以实时创建 它。可以在 ./linux/include/linux/fs.h 中找到超级块结构(见图 4)。


图 4. 超级块结构和 inode 操作
 图 4. 超级块结构和 inode 操作

超级块中的一个重要元素是超级块操作的定义。这个结构定义一组用来管理这个文件系统中的 inode 的函数。例如,可以用 alloc_inode 分配 inode,用 destroy_inode 删除 inode。可以用 read_inodewrite_inode 读写 inode,用 sync_fs 执行文件系统同步。可以在 ./linux/include/linux/fs.h 中找到 super_operations 结构。每个文件系统提供自己的 inode 方法,这些方法实现操作并向 VFS 层提供通用的抽象。

inode 和 dentry

inode 表示文件系统中的一个对象,它具有惟一标识符。各个文件系统提供将文件名映射为惟一 inode 标识符和 inode 引用的方法。图 5 显示 inode 结构的一部分以及两个相关结构。请特别注意 inode_operationsfile_operations。这些结构表示可以在这个 inode 上执行的操作。inode_operations 定义直接在 inode 上执行的操作,而 file_operations 定义与文件和目录相关的方法(标准系统调用)。


图 5. inode 结构和相关联的操作
 图 5. inode 结构和相关联的操作

inode 和目录缓存分别保存最近使用的 inode 和 dentry。注意,对于 inode 缓存中的每个 inode,在目录缓存中都有一个对应的 dentry。可以在 ./linux/include/linux/fs.h 中找到 inodedentry 结构。

缓冲区缓存

除了各个文件系统实现(可以在 ./linux/fs 中找到)之外,文件系统层的底部是缓冲区缓存。这个组件跟踪来自文件系统实现和物理设备(通过设备驱动程序)的读写请求。为了提高效率,Linux 对请求进行缓存,避免将所有请求发送到物理设备。缓存中缓存最近使用的缓冲区(页面),这些缓冲区可以快速提供给各个文件系统。




回页首


有趣的文件系统

本文没有讨论 Linux 中可用的具体文件系统,但是值得在这里稍微提一下。Linux 支持许多种文件系统,包括 MINIX、MS-DOS 和 ext2 等老式文件系统。Linux 还支持 ext3、JFS 和 ReiserFS 等新的日志型文件系统。另外,Linux 支持加密文件系统(比如 CFS)和虚拟文件系统(比如 /proc)。

最后一种值得注意的文件系统是 Filesystem in Userspace(FUSE)。这种文件系统可以将文件系统请求通过 VFS 发送回用户空间。所以,如果您有兴趣创建自己的文件系统,那么通过使用 FUSE 进行开发是一种不错的方法。




回页首


结束语

尽管文件系统的实现并不复杂,但它是可伸缩和可扩展的体系结构的好例子。文件系统体系结构已经发展了许多年,并成功地支持了许多不同类型的文件系统和许多目标存储设备类型。由于使用了基于插件的体系结构和多层的函数间接性,Linux 文件系统在近期的发展很值得关注。



参考资料

学习

8个实用而有趣Bash命令提示行

很多人都对过命令行提示的重要性不屑一顾,甚至是一点都不关心。但是我却一点都不这么认为,一个好的命令行提示可以改变你使用命令的方式。为此,我在internet上找到一些非常实用,优秀,并有趣的bash的命令行提示。下面我将我最喜欢使用的一些命令行提示罗列如下。

注意  -  要使用下面这些提示,你可以拷贝粘贴这些以”PS1″打头的内容到你的终端上,为了使你的改变永久生效,还要将这些内容粘贴到你使用用户的~/.bashrc文件中去。

 

1. 在成功执行的命令上增加一个笑脸符号

这个命令提示行可能是这个命令行提示列表中最有趣的一个,但是它也依然有使用的价值。这个提示的想法是基于当你命令被成功执行,你将会得到一个笑脸作为你的命令行提示,一旦的命令执行失败,命令行提示将会换成一个哭脸。

例子:

bashprompts-happyface

代码:

PS1=”\`if [ \$? = 0 ]; then echo \[\e[33m\]^_^\[\e[0m\]; else echo \[\e[31m\]O_O\[\e[0m\]; fi\`[\u@\h:\w]\\$ “

2.更改失败命令的颜色

下面这个命令行提示是我最喜欢的命令行之一。和上一个相似,这个命令行提示的颜色会在你最后一个命令运行失败后改变,而且这个命令行长路径会缩短输入命令的空间,这个命令提示还包含了bash 每个历史命令的命令号,以方便重新提取运行。

例子:

bashprompts-hurring

代码:

PS1=”\[\033[0;33m\][\!]\`if [[ \$? = "0" ]]; then echo “\\[\\033[32m\\]“; else echo “\\[\\033[31m\\]“; fi\`[\u.\h: \`if [[ `pwd|wc -c|tr -d " "` > 18 ]]; then echo “\\W”; else echo “\\w”; fi\`]\$\[\033[0m\] “; echo -ne “\033]0;`hostname -s`:`pwd`\007″‘

3. 多行提示

如果你是喜欢命令行提示中包含完整信息的那一类人,那么下边就有一个适合于你的命令行提示。这个命令行提示信息中包含日期/时间,全路径,用户,主机,活动终端,甚至包含文件数和占用空间等。

例子:


bashprompts-informant

代码:

PROMPT_COMMAND=’PS1=”\n\[\033[35m\]\$(/bin/date)\n\[\033[32m\]\w\n\[\033[1;31m\]\u@\h: \[\033[1;34m\]\$(/usr/bin/tty | /bin/sed -e ’s:/dev/::’): \[\033[1;36m\]\$(/bin/ls -1 | /usr/bin/wc -l | /bin/sed ’s: ::g’) files \[\033[1;33m\]\$(/bin/ls -lah | /bin/grep -m 1 total | /bin/sed ’s/total //’)b\[\033[0m\] -> \[\033[0m\]“‘

 

4. 多颜色提示

这个命令行提示除了使用了不同颜色来区别不同信息外,它并没有很特别的地方。就像你看到的那样,它提供了时间,用户名,主机名,当前目录。相当少的信息,但是非常地实用。

例子:

bashprompts-4

代码:

PS1=”\[\033[35m\]\t\[\033[m\]-\[\033[36m\]\u\[\033[m\]@\[\033[32m\]\h:\[\033[33;1m\]\w\[\033[m\]\$ “

 

5.显示完整路径

这是一个良好,简洁,最小的2行提示(加上顶上的空行)。在第一行你能得到一个全路径信息,在第二行是一个用户名。如果你对每个命令提示行的空行不爽的话,你只要移走第一个\n就OK了

例子:

bashprompts-5

代码:

PS1=”[\[\033[32m\]\w]\[\033[0m\]\n\[\033[1;36m\]\u\[\033[1;33m\]-> \[\033[0m\]“

 

6. 显示后台运行任务数

这是另外的一个两行提示,但是这个两行提示具有更多的之前我们没有的信息。第一行是显示通常的user@host和全路径等信息。在第二行我们可以得到命令执行历史序号和一个后台运行任务个数信息。

例子:

 

bashprompts-6

代码:

PS1=’\[\e[1;32m\]\u@\H:\[\e[m\] \[\e[1;37m\]\w\[\e[m\]\n\[\e[1;33m\]hist:\! \[\e[0;33m\] \[\e[1;31m\]jobs:\j \$\[\e[m\] ‘

 

7. 显示路径信息

这是一个非常眩的设计。我们可以从这个命令行提示信息的第一行中获取到用户/主机,运行任务数,和时间日期等信息。在第二行我们可以得到当前目录的文件数和他们占用的磁盘空间。

例子:

 

bashprompts-7

代码:

PS1=”\n\[\e[30;1m\]\[\016\]l\[\017\](\[\e[34;1m\]\u@\h\[\e[30;1m\])-(\[\e[34;1m\]\j\[\e[30;1m\])-(\[\e[34;1m\]\@ \d\[\e[30;1m\])->\[\e[30;1m\]\n\[\016\]m\[\017\]-(\[\[\e[32;1m\]\w\[\e[30;1m\])-(\[\e[32;1m\]\$(/bin/ls -1 | /usr/bin/wc -l | /bin/sed ’s: ::g’) files, \$(/bin/ls -lah | /bin/grep -m 1 total | /bin/sed ’s/total //’)b\[\e[30;1m\])–> \[\e[0m\]“

8. My Prompt

最后这个命令提示行是我个人最喜欢的使用的命令提示行。它是#7的一个修改,这个命令提示行只包含我最希望知道的信息,因此节省了它的占用空间。我偏爱两行风格,因为这样不仅可以让我看到全路径信息,而且不影响我命令输入的可视空间。

例子:

bashprompts-8

代码:

PS1=”\n\[\e[32;1m\](\[\e[37;1m\]\u\[\e[32;1m\])-(\[\e[37;1m\]jobs:\j\[\e[32;1m\])-(\[\e[37;1m\]\w\[\e[32;1m\])\n(\[\[\e[37;1m\]! \!\[\e[32;1m\])-> \[\e[0m\]“

如果你愿意共享你的命令提示行,请在将这些命令提示代码加在下面的评论中。

PS1=”\n\[\033[35m\]\$(/bin/date)\n\[\033[32m\]\w\n\[\033[1;31m\]\u@\h: \[\033[1;34m\]\$(/usr/bin/tty | /bin/sed

-e ’s:/dev/::’): \[\033[1;36m\]\$(/bin/ls -1 | /usr/bin/wc -l | /bin/sed ’s: ::g’) files \[\033[1;33m\]\$(/bin/ls -lah | /bin/grep -m 1 total | /bin/sed ’s/total //’)b\[\033[0m\] -> \[\033[0m\]”

 出处